top of page

29.   An exceptionally large optical spin Hall effect in exciton-polariton condensates

Xiang, B.; Li, Y.; Spencer, M.; Dai, Y.; Bai, Y.; Basov, D.; Zhu, X.-Y.


28.   Band gap opening of metallic single-walled carbon nanotubes via noncovalent symmetry breaking

Mastrocinque, F.; Bullard, G.; Alatis, J. A.; Albro, J. A.; Nayak, A.; Williams, N. X.; Kumbhar, A.; Meikle, H.; Widel, Z. X. W.; Bai, Y.; Harvey, A. K.; Atkin, J. M.; Waldeck, D. H.; Franklin, A. D.; Therien, M. J.

Proc. Natl. Acad. Sci. U.S.A. 2024, 121, e2317078121.

27.   Evidence for exciton crystals in a 2D semiconductor heterotrilayer

Bai, Y.; Li, Y.; Liu, S.; Guo, Y.; Pack, J.; Wang, J.; Dean, C. R.; Hone, J.; Zhu X.-Y.

Nano. Lett. 2023, 23, 11621-11629.

26.   Extreme insensitivity of trion binding energy to disorder in monolayer MoSe2

Wang, J.; Manolatou, C.; Bai, Y.; Hone, J.; Rana, F.; Zhu X.-Y.

J. Chem. Phys. 2022, 157, 211101.

25.   Exciton-coupled coherent antiferromagnetic magnons in a 2D semiconductor

Bae, Y. J.; Wang, J.; Xu, J.; Chica, D. G.; Diederich, G. M.; Cenker, J.; Ziebel, M. E.; Bai, Y.; Ren, H.; Dean, C. R.; Delor, M.; Xu, X.; Roy, X.; Kent, A. D.; Zhu, X.-Y.

Nature 2022, 609, 282-286.

24.   Free trion with near-unity quantum yield in monolayer MoSe2

Kim, B.; Luo, Y.; Rhodes, D.; Bai, Y.; Wang, J.; Liu, S.; Cho, Y.; Huang, B.; Li, Z.; Taniguchi, T.; Watanabe, K.; Berkelbach, T. C.; Strauf, S.; Barmak, K.; Zhu, X.-Y.; Hone, J.

ACS Nano 2021, 16, 140-147.

23.   Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy

Policht, V.; Russo, M.; Liu, F.; Trovatello, C.; Maiuri, M.; Bai, Y.; Zhu, X.-Y.; DalConte, S.; Cerullo, C.

Nano Lett. 2021, 21, 4738-4743.

22.   Excitonic Phase Transitions in MoSe2/WSe2 Heterobilayers

Wang, J.; Shi, Q.; Shih, E.-M.; Zhou, L.; Wu, W.; Bai, Y.; Rhodes, D. A.; Barmak, K.; Hone, J.; Dean, C. R.; Zhu, X.-Y.

Phys. Rev. Lett. 2020, 126, 106804.

21.   Topology, distance, and orbital symmetry effects on electronic spin-spin couplings in rigid molecular systems: implications for long-distance spin-spin interactions

Wang, R.; Ko, C.-H.; Brugh, A. M.; Bai, Y.; Forbes, M. D. E.; Therien, M. J.

J. Phys. Chem. A 2020, 124, 7411-7415.


20.   Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunction

Bai, Y.*; Zhou, L.*; Wang, J.; Wu, W.; McGilly, L.; Halbertal, D.; Lo, C.; Liu, F.; Ardelean, J.; Rivera, P.; Finney, N.; Yang, X.-C.; Basov, D. N.; Yao, W.; Xu, X.; Hone, J.; Pasupathy, A.; Zhu, X.-Y.

Nat. Mater. 2020, 19, 1068-1073. *equal contribution

19.   Electronic structure and photophysics of a supermolecular iron complex having a long MLCT-state lifetime and panchromatic absorption

Jiang, T.*; Bai, Y.*; Zhang, P.; Han, Q.; Mitzi, D. B.; Therien, M. J.

Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 20430-20437. *equal contribution


18.   Visualization of moiré superlattices

McGilly, L. J.; Kerelsky, A.; Finney, N. R.; Shapovalov, K.; Ghiotto, A.; Shih, E.-M.; Zeng, Y.; Moore, S. L.; Wu, W.; Bai, Y.; Watanabe, K.; Taniguchi, T.; Zhou, L.; Hone, J.; Zhu, X.-Y.; Basov, D.; Dean, C. R.; Dreyer, C. E.; Pasupathy A. N.

Nat. Nanotech. 2020, 15, 580-584.


17.   Correlated electronic phases in twisted bilayer transition metal dichalcogenides

Wang, L.*; Shih, E.-M.*; Ghiotto, A.*; Xian, L.; Rhodes, D. A.; Tan, C.; Claassen, M.; Kennes, D. M.; Bai, Y.; Kim, B.; Watanabe, K.; Taniguchi, T.; Zhu, X.-Y.; Hone, J.; Rubio, A.; Pasupathy, A.; Dean C. R.

Nat. Mater. 2020, 19, 861-866. *equal contribution


16.   Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices

Liu, F.; Wu, W.; Bai, Y.; Chae, S.; Li, Q.; Wang, J.; Hone, J.; Zhu X.-Y.

Science 2020, 367, 903-906.


15.   Optical generation of high carrier densities in 2D semiconductor heterobilayers

Wang, J.*; Ardelean, J.*; Bai, Y.*; Steinhoff, A.; Florian, M.; Wen, Q.; Jahnke, F.; Xu, X.; Kira, M.; Hone, J.; Zhu, X.-Y.

Sci. Adv. 2019, 5, eaax0145. *equal contribution


14.   Quantitative evaluation of optical free carrier generation in semiconducting single-walled carbon nanotubes

Bai, Y.; Bullard, G.; Olivier, J.-H.; Therien, M. J.

J. Am. Chem. Soc. 2018, 140, 14619-14626.

13.   Carrier dynamics engineering for high-performance electron-transport-layer-free perovskite photovoltaics

Han, Q.; Ding, J.; Bai, Y.; Li, T.; Ma, J.; Chen, Y.; Zhou, Y.; Liu, J.; Ge, Q.; Chen, J.; Glass, J. T.; Therien, M. J.; Liu, J.; Mitzi, D. B.; Hu, J.-S.

Chem 2018, 4, 2405-2417.


12.   Solvent- and wavelength-dependent photoluminescence relaxation dynamics of carbon nanotube sp3 defect states

He, X.; Velizhanin, K. A.; Bullard, G.; Bai, Y.; Olivier, J.-H.; Hartmann, N. F.; Gifford, B. J.; Kilina, S.; Tretiak, S.; Htoon, H.; Therien, M. J.; Doorn, S. K.

ACS Nano 2018, 12, 8060-8070.


11.   Dynamics of charge excitons in electronically and morphologically homogeneous single-walled carbon nanotubes

Bai, Y.; Olivier, J.-H.; Bullard, G.; Liu, C.; Therien, M. J.

Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 674-679.


10.   Molecular road map to tuning ground state absorption and excited state dynamics of long-wavelength absorbers

Bai, Y.; Olivier, J.-H.; Yoo, H.; Polizzi, N. F.; Park, J.; Rawson, J.; Therien, M. J.

J. Am. Chem. Soc. 2017, 139, 16946-16958.


9.     Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes

Han, Q.; Bai, Y.; Liu, J.; Du, K.-Z.; Li, T.; Ji, D.; Zhou, Y.; Cao, C.; Shin, D.; Ding, J.; Franklin, A. D.; Glass, J. T.; Hu, J.-S.; Therien, M. J.; Liu, J.; Mitzi, D. B.

Energy Environ. Sci. 2017, 10, 2365-2371.


8.     Controlling the excited-state dynamics of low band gap near-infrared absorbers via proquinoidal unit electronic structural modulation

Bai, Y.; Rawson, J.; Roget, S. A.; Olivier, J.-H.; Lin, J.; Zhang, P.; Beratan, D.; Therien, M. J. 

Chem. Sci. 2017, 8, 5889-5901.


7.     First-order hyberpolarizabilities of chiral, polymer-wrapped single-walled carbon nanotubes

Depotter, G.; Olivier, J.-H.; Glesner, M. G.; Deria, P.; Bai, Y.; Bullard, G.; Kumbhar, A. S.; Therien, M. J.; Clays, K.

Chem. Commun. 2016, 52, 12206-12209.


6.     Unambiguous diagnosis of photoinduced charged carrier signatures in a stoichiometrically controlled semiconducting polymer-wrapped carbon nanotube assembly

Olivier, J.-H.; Park, J.; Deria, P.; Rawson, J.; Bai, Y.; Kumbhar, A. S.; Therien, M. J.

Angew. Chem., Int. Ed 2015, 54, 1-7.


5.     Near infrared-to-visible photon upconversion enabled by highly conjugated sensitizers under low-power noncoherent illumination

Olivier, J.-H.; Bai, Y.; Uh. Y; Therien, M. J.; Castellano, F. N.

J. Phys. Chem. A 2015, 119, 5642-5649.


4.     A facile way to rejuvenate Ag3PO4 as a recyclable highly efficient photocatalyst

Wang, H.; Bai, Y.; Yang, J.; Lang, X.; Li, J.; Guo, L.

Chem. Eur. J. 2012, 18, 5524-5529.


3.     The self-assembly of porous microspheres of tin dioxide octahedral nanoparticles for high performance lithium ion battery anode materials

Wang, H.; Wu, Y.; Bai, Y.; Zhou, W.; An, Y.; Li, J.; Guo, L.

J. Mater. Chem. 2011, 21, 10189-10194.

2.     Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells

Wang, H.; Bai, Y.; Wu, Q.; Zhou, W.; Zhang, H.; Li, J.; Guo, L.

Phys. Chem. Chem. Phys. 2011, 13, 7008-7013.


1.     CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes

Wang, H.; Bai, Y.; Zhang, H.; Zhang, Z.; Li, J.; Guo, L.

J. Phys. Chem. C 2010, 114, 16451-16455.

bottom of page